
LLNL-JRNL-422668

Massively Multi-core Acceleration of a
Document-Similarity Classifier to Detect
Web Attacks

C. Ulmer, M. Gokhale, P. Top, B. Gallagher, T.
Eliassi-Rad

January 21, 2010

Journal of Parallel and Distributed Computing

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Massively Parallel Acceleration of a

Document-Similarity Classifier to Detect Web Attacks

Craig Ulmerb, Maya Gokhalea,∗, Brian Gallaghera, Philip Topa, Tina
Eliassi-Rada

aLawrence Livermore National Laboratory
bSandia National Laboratories, CA

Abstract

This paper describes our approach to adapting a text document simi-
larity classifier based on the Term Frequency Inverse Document Frequency
(TFIDF) metric to two massively multi-core hardware platforms. The TFIDF
classifier is used to detect web attacks in HTTP data. In our parallel hard-
ware approaches, we design streaming, real time classifiers by simplifying
the sequential algorithm and manipulating the classifier’s model to allow de-
cision information to be represented compactly. Parallel implementations
on the Tilera 64-core System on Chip and the Xilinx Virtex 5-LX FPGA
are presented. For the Tilera, we employ a reduced state machine to rec-
ognize dictionary terms without requiring explicit tokenization, and achieve
throughput of 37MB/s at slightly reduced accuracy. For the FPGA, we have
developed a set of software tools to help automate the process of converting
training data to synthesizable hardware and to provide a means of trading
off between accuracy and resource utilization. The Xilinx Virtex 5-LX imple-
mentation requires 0.2% of the memory used by the original algorithm. At
166MB/s (80X the software) the hardware implementation is able to achieve
Gigabit network throughput at the same accuracy as the original algorithm.

Keywords: cybersecurity, document classification, machine learning,
multi-core, reconfigurable computing,

IThis work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-
JRNL-422668.

∗Contact: 925-422-9864 (ph), 925-423-2993 (fax) (Maya Gokhale)
Email address: maya@llnl.gov (Maya Gokhale)

Preprint submitted to Journal of Parallel and Distributed Computing January 21, 2011

GET /eH/first_str/2hFnull6/oixsotcwrseamgit2/38PrR_Lkmmzo.htm
Host: www.a215Een.st:15
Connection: close
Accept: */*
Accept-Charset: *;q=0.4
Accept-Encoding: *
Accept-Language: boHEor-sen0, gte-htmse4 oS, 3TeoUsHn-asrao;q=0.2, paly-wreihi, 78iiqths-ar;q=0.3
Cache-Control: no-store
Client-ip: 200.91.18.159
Cookie: uciy2kleicl=%3C%21--+%23odbc++++++++++++++connect%3D%226at8h%2CHcteil%2CeHnNa%22+++++statement%3D%22drop+table+elkbO…

odbc
connect

statement
drop table

Figure 1: Sample HTTP request with malicious database activity

1. Introduction

As the world becomes more reliant on Web applications for commercial,
financial, and medical transactions, cyber attacks on the World Wide Web
are increasing in frequency and severity. Web applications provide an attrac-
tive alternative to traditional desktop applications due to their accessibility
and ease of deployment. However, the accessibility of Web applications also
makes them extremely vulnerable to attack. This inherent vulnerability is
intensified by the distributed nature of Web applications and the complexity
of configuring application servers. These factors have led to a proliferation of
Web-based attacks, in which attackers surreptitiously inject code into HTTP
requests, allowing them to execute arbitrary commands on remote systems
and perform malicious activities such as reading, altering, or destroying sen-
sitive data (e.g., credit card numbers, trade secrets, medical history). Figure
1 shows a sample HTTP request containing a “SQL Injection” attack, in
which an entire data table is deleted by a malicious SQL command.

In order to prevent such attacks, we need to identify malicious code in in-
coming HTTP requests and eliminate bad requests before they are processed.
Using machine learning techniques, we can build a classifier to automatically
label requests as “Valid” or “Attack.” For this study, we develop a simple,
but effective HTTP attack classifier, based on the vector space model [1]
used commonly for Information Retrieval. Our classifier not only separates
attacks from valid requests, but can also identify specific attack types (e.g.,
“SQL Injection” or “Path Traversal”).

The classification performance of our sequential algorithm [2] compares
favorably to previously published work on the ECML/PKDD 2007 Discovery

2

Challenge data set, achieving an F1 score of 0.93, compared to 0.80 and 0.48
for previous approaches. Our approach demonstrates accuracy of 94%.

Building on this approach, we have devised two massively parallel, stream-
ing algorithms to classify HTTP requests as they arrive in a text stream
transmitted over a high-speed internetwork. Using our methods, real time
classification of HTTP requests into attack vs. normal categories serves as
an advanced intrusion prevention method capable of detecting and thwarting
web attacks as they occur.

We present a parallel implementation optimized for the TileraTM 64-core
System on Chip. The two level data parallel approach organizes the cores
into multiple units of nine tiles (cores). This nine-tile processing unit is
then replicated to the capacity of the chip, allowing the units to process
independent document streams. By compacting the term dictionary to fit
into the L2 cache of each core, we can classify web request documents at
37MB/s (18.5X speedup over the sequential algorithm).

Our FPGA algorithm has been optimized for streaming computation in
a hardware pipeline that exploits on-chip distributed RAM (known as Block
RAM or BRAM on Xilinx FPGAs) for high performance. The hardware
building blocks are highly configurable, and their configuration parameters
are generated semi-automatically through analysis of the training data set.
The classifier demonstrates throughput of 166MB/s (80X speedup over the
sequential algorithm) at the same accuracy as the sequential algorithm.

2. Sequential Algorithm

A novel HTTP attack classification algorithm was proposed by Gallagher
and Eliassi-Rad [2], and a sequential Java implementation was devised. This
algorithm is based on a classic vector space model from Information Retrieval.
Vector space models (a.k.a. term vector models) were first used in an infor-
mation retrieval system called SMART [3]. These models are commonly used
to retrieve information relevant to an input query from a text/document cor-
pus. The first Web search engines (i.e. before Google) were predominately
based on vector space models. Over the years, several vector space classifi-
cation methods have been invented, two of the most popular being Rocchio
and kNN classification (see Sections 14.2 and 14.3 of [4]).

3

2.1. Document Similarity

The HTTP attack classification algorithm depends on the concept of
document similarity. Document similarity using term weights is a well-
understood Information Retrieval technique [1]. The goal is to: (1) weight
terms in each document such that the most representative terms receive the
highest weight, (2) represent each document by a vector of term weights, and
(3) compare documents to one another using a similarity measure over the
space of term vectors.

An effective and well-known weighting scheme for this purpose is tfidf [1].
The tfidf weight consists of two components: tf and idf . Term frequency
(tf) measures how often a specific term t occurs within a given document d,
relative to all terms v in d:

tf(t, d) =
count(t, d)∑
v∈d count(v, d)

(1)

Inverse document frequency (idf) measures the proportion of documents
d in the collection D in which term t occurs.

idf(t) =
log |D|

|{d ∈ D : t ∈ d}|
(2)

The tfidf assigns the highest weight to terms t that occur frequently in
document d, but occur in few other documents.

tfidf(t, d) = tf(t, d) · idf(t) (3)

In the vector space model, document d is characterized by tfidf vector
Vd. Each component i of Vd holds the tfidf score of the i’th term in the
document collection. Similarity between documents d and a is calculated
using the cosine of the angle θ between the tfidf vectors Vd and Va:

sim(d, a) = cos(θVd,Va) (4)

i.e.

sim(d, a) =
Vd · Va
‖Vd‖‖Va‖

(5)

or equivalently

sim(d, a) =

∑
t∈d∩a tfidf(t, d) · tfidf(t, a)√∑

t∈d tfidf(t, d)2
√∑

t∈a tfidf(t, a)2
(6)

4

2.2. Data Set

Our experiments primarily use a data set released by the European Con-
ference on Machine Learning (ECML) and the 11th European Conference on
the Principles and Practice of Knowledge Discovery in Databases (PKDD) in
2007 as part of the 2007 Discovery Challenge [5]. The data set contains more
than 120,000 labeled HTTP requests, of which 50,000 are for training, and
70,000 constitute the testing data. 70% of the training requests are normal,
valid requests, and 30% contain cybersecurity attacks. In the testing data,
60% are normal and 40% are attack.

There are seven different sorts of attacks: cross site scripting (XSS), SQL
injection, LDAP injection, XPATH injection, directory path traversal, com-
mand execution, and Server Side Include (SSI) attacks. The 2007 challenge
was to detect and characterize the attacks.

Each training and test instance in the data set contained the full text of
the http request, divided into the following components: method, protocol,
uri, query, headers, and body. In addition, each HTTP request included the
following contextual attributes:

• Operating system running on the Web Server (UNIX, WINDOWS,
UNKNOWN)

• HTTP Server targeted by the request (APACHE, MIIS, UNKNOWN)

• Is the XPATH technology understood by the server? (TRUE, FALSE,
UNKNOWN)

• LDAP database on the Web Server? (TRUE, FALSE, UNKNOWN)

• SQL database on the Web Server? (TRUE, FALSE, UNKNOWN)

In addition to the ECML/PKDD data set, we have applied our algorithm
to the 2009 Inter-Service Academy Cyber Defense Exercise data, the “West
Point” data set [6]. This data was generated by an experiment to have the
National Security Agency attack a network at West Point Academy. This
data set was used to analyze throughput performance of our algorithms.
Since it was not labeled, we could not derive accuracy measures from the
West Point data set.

5

2.3. Related Work

Discovery Challenge Over 25 groups registered for the ECML/PKDD Dis-
covery Challenge, but only two submitted final results. According to Rassi et.
al. [7], most researchers failed to submit results because they found that tra-
ditional data mining approaches were unsuccessful and felt that a specialized
knowledge of attack detection was required to adequately address the prob-
lem. The two groups that submitted results took very different approaches
to the problem. Pachopoulos et al. [8] tried two different approaches:

Approach 1: Extract binary features from the HTTP request data, per-
form feature selection, and then apply C4, a standard supervised-learning
decision-tree algorithm, to build a classifier.

Approach 2: Use the string representations of the various HTTP fields
directly as features for input to a Support Vector Machine using a String Ker-
nel. The authors abandoned the SVM approach in favor of the C4 approach
after the former failed to deliver satisfactory performance.1 The binary fea-
tures used as input to C4 are based on the presence or absence of a number
of attack indicators, derived manually by the authors.

The approach of Exbrayant [10] is based on constructing a language model
that is used to define HTTP attack patterns. The author notes that attack
patterns consist of sequences of keywords, variables, and symbols. Thus, the
approach derives rules based on such sequences that can be used to identify
the beginning and end of attack strings in HTTP requests. The core of this
approach involves extracting and evaluating potential rules. Once this is
done, it is straightforward to classify a candidate request based on whether
it matches a given rule. While the Exbrayant classifier shows better results
than Pachopoulos, it does not achieve the accuracy of our TFIDF approach.
TFIDF in hardware Chen et. al. [11] report on an FPGA design combining
on-chip general purpose processor with an array of term counting IP blocks.
In contrast to our design which uses Bloom filters, the implementation uses
fixed length comparators to compare chunks of the term in successive cycles.
Simulation results are presented that show a 3–7 times speedup over software.
The work performs term frequency counting only.
Network Intrusion Detection There is a large body of literature report-
ing hardware and multi-core acceleration of network intrusion detection. The
most common approach is to compile signatures expressed as regular expres-

1Pachopoulos et al. [8] used WEKA’s implementation of C4 and SVM [9].

6

sions into FPGA hardware, eg. TCAM [12] or logic [13]. Network intrusion
detection using Principal Components Analysis is reported by Das et. al.
[14]. In contrast, our work classifies based on term frequency rather than
fixed regular expression patterns.

2.4. TFIDF Method

Our approach applies the TFIDF method to train and run a classifier to
detect attacks. To train the classifier, all requests of a specific attack type
in the training set are combined into a single document, resulting in eight
reference attack documents. tfidf vectors are computed for each reference
document.

In the testing phase, each HTTP request in the testing data set is consid-
ered to be a single document, and the cosine similarity between the incoming
request and each reference attack document is computed. Once all similarity
scores are computed, a threshold operation is applied to remove terms whose
similarity scores are lower than a threshold. This operation improves the
quality of the results when comparing the attack scores to the valid score,
most notably when the dictionary has a large number of terms. This pa-
rameter is typically set during training to balance precision and recall [15]
statistics. A lower value implies a more hostile environment, where it is im-
portant to filter anything that appears malicious, even if it means mistakenly
filtering harmless traffic. The document is classified as belonging to the class
of the most similar reference document. The process is shown in Figure 2.

On the ECML/PKDD 2007 Discovery Challenge data set, our sequential
algorithm gave accuracy of 94% in distinguishing attack vs. normal and
91% in correctly distinguishing the type of attack. The single-threaded Java
software implementation of the algorithm runs at about 2MB/s on a standard
PC workstation (2.2GHz, quad core, 8GB memory). A Hadoop MapReduce
implementation of this algorithm, including the original Java source code, is
publicly available [16].

We note that although the TFIDF approach compares favorably to other
state-of-the-art approaches for Web attack classification, it does have some
limitations, which we address here. The single data characteristic that most
impacts the approach is how reliably specific terms map to concepts of in-
terest. It may be possible to evade detection by carrying out an attack using
an unusual set of terms. However, the regularity of programming language
syntax works in our favor here. For instance, there are a small number of
SQL commands that result in the deletion of a database table. Of course, if

7

HTTP
Classifier

TF-IDF
Dictionary

TF-IDF
Training

HTTP
Traces
(50K)

HTTP
Traces
(70K)

Attack
Label

Training

Testing

Figure 2: Training and testing the classifier

commands are obfuscated (e.g., via convoluted JavaScript), this will create
problems for any of the proposed detection techniques. Another limitation of
the TFIDF-based approach is that the discovery of new attacks potentially
requires expanding the vocabulary and relearning attack models. Limiting
assumptions of the approach include term independence and irrelevance of
term order. Ideally we would model meaning at a higher-level than term
frequency. However, as we saw with the language modeling approach in
section 2.3, a more sophisticated model does not necessarily lead to better
results in practice.

3. Parallel Implementations

The TFIDF method offers a novel approach to detecting malicious web
HTTP requests. However, the sequential algorithm implementing Equation 6
requires access to the entire document collection a priori. Further, at 2MB/s
the sequential algorithm cannot process a real-time data stream. Since our
goal is a streaming, real-time approach, we study the equation and data set
for optimization opportunities. We seek to optimize the classification phase
of the TFIDF algorithm, and perform the training phase off-line.
Streaming In a streaming environment, the data must be processed in a sin-
gle pass with very limited buffering. We observe that according to Equation
6 a term’s idf scores can’t be computed until the entire document collection
has been scanned. In a streaming environment, the document collection is

8

never complete, and therefore the idf we used is based on the training docu-
ment collection, which is pre-computed and can simply be looked up in the
dictionary. Both parallel implementations use an idf value pre-computed
from the training data set.
Memory reduction To maintain high throughput, the classifier model
(called dictionary in this context) must be stored on-chip. In this application,
the limited memory presents a formidable challenge, as the full dictionary for
the ECLM training data set uses 47MB. While this is fairly modest in a work-
station environment, it is not feasible when on-chip memory is distributed
among many parallel processing cores.

The classifier model or dictionary holds the tfidf score for each term
encountered in the training data set. The number of terms in the dictionary
ultimately dictates how much information is available during classification.
A reasonable accuracy can be achieved with only a small number (e.g., 32) of
high-value keywords. Supplementing these terms with a large number (e.g.,
hundreds to thousands) of less important but still relevant terms typically
improves accuracy until the classifier becomes overtrained. After this point
accuracy may stay constant or degrade. Increasing the number of dictionary
terms increases the amount of data a classifier must maintain.

101 102 103 104 105 106

Total Dictionary Terms

90

92

94

96

98

100

A
cc

ur
ac

y
(P

er
ce

nt
)

Training Data, Original
Training Data, Streaming
Competition Data, Original
Competition Data, Streaming

Figure 3: Impact of number of terms on accuracy

A test program was constructed to evaluate the impact of changes to the
original algorithm and observe the impact of reducing the number of terms in
the dictionary A dictionary was constructed based on the training data set.

9

We varied the number of terms in the dictionary and then measured accuracy
when the original and streaming versions of the algorithm were used to clas-
sify the training and testing data sets. The results are presented in Figure
3. As expected, the classifier performed exceptionally well on the training
data set, with accuracy improving as more terms are included. The testing
results level off after two to eight thousand unique terms. This plateau is
expected and indicates the point at which the classifier becomes overtrained.
Both parallel implementations truncate the number of terms to reduce the
size of the dictionary.

4. Tilera Mapping

4.1. Tilera Architecture

The Tilera processor is a low power, many-core System on Chip. The
Tilera 64 used in this application consists of an 8×8 array of 700MHz custom
32-bit integer processors running Linux. The processors communicate with
each other, memory, and external devices through a unique two-dimensional
switched mesh interconnect with five communication networks. The chip
includes a 10Gb/s Ethernet port, PCI Express ports, and a DDR2 mem-
ory controller. Like conventional multi-core processors, the Tilera cores (or
“tiles”) have a shared address space with hardware maintained cache coher-
ence. Unlike conventional multi-core processors, the tiles include switches to
route communication. The processors communicate over a dynamic on-chip
interconnection network or a user-managed static interconnection network.
The switches also transparently route cache, memory and I/O accesses. Each
tile has two 8KB L1 caches for program and data, and a 64KB L2 cache for
local scratchpad operations. The tile has a 3-way VLIW instruction set for
concurrent memory, I/O, and ALU operations, DSP-like instructions, a 2-
stage instruction pipeline, and sixty-four 32-bit registers.

The tiles are programmed in C or assembly language. The Tilera runs
Linux and supports pthreads and sockets as well as a proprietary high per-
formance concurrency and communication library.

4.2. Tilera Algorithm

The Tilera algorithm is shaped by the limited cache available to each
tile. Although hardware memory management gives a unified address space

10

across the tiles, a variable latency of memory accesses can dramatically re-
duce streaming throughput. Thus, the principal design decision is to reduce
the model size to fit the dictionary into the 64KB L2 cache of each tile.

Using accuracy results described above, we truncate the term frequency
vector to 255 elements, for an accuracy of 92%. This allows a complete
dictionary to be stored on each tile, and eliminates inter-tile communication
to access dictionary elements. The eight dictionaries (seven attack types
and “normal”) are stored in eight tiles, with a ninth tile dedicated to data
ingest. The unit of nine tiles is replicated six times, using 54 of the 64 tiles
plus an aggregator tile. Further replication is not possible as several tiles
are reserved for the OS. The algorithm’s spatial layout is shown in Figure 4.
The architecture demonstrates two levels of data parallel processing. First,
eight different attack classifiers analyze the same data in parallel. Second,
six different processing units classify different data streams.

Tilera

1

Attack

Attack

Attack

Attack

Attack

Attack

In

2

3

5

6

7

4

Normal

Attack

1

Attack

Attack

Attack

Attack

Attack

Attack

In

2

3

5

6

7

4

Normal

Attack

1

Attack

Attack

Attack

Attack

Attack

Attack

In

2

3

5

6

7

4

Normal

Attack

1

Attack

Attack

Attack

Attack

Attack

Attack

In

2

3

5

6

7

4

Normal

Attack

1

Attack

Attack

Attack

Attack

Attack

Attack

In

2

3

5

6

7

4

Normal

Attack

1

Attack

Attack

Attack

Attack

Attack

Attack

In

2

3

5

6

7

4

Normal

Aggregate

CTL

Host

Attack

Figure 4: Layout of processes on Tilera cores

A second optimization is to eliminate the overhead of tokenization. Rather
than separate the input stream into tokens and then look up each token
(term) via hashing into a table, a state transition matrix is used. This ma-
trix is the Tilera algorithm’s representation of the dictionary. Each incoming
character in the data stream indexes into the state machine transition matrix,
yielding the next state. Most state transitions require a table lookup and a
conditional. If a delimiter token occurs, the count for the appropriate term
is incremented. When an end-of-document marker is detected, the similarity

11

Figure 5: Dictionary traversal using state machine

measure is computed and returned to the host.
Figure 5 shows an example of a state transition matrix for the dictionary

{Select, Drop, Odbc, Statement}. Each row represents an input character,
and each column represents a state. If the word “drop” were given, the state
sequence would be (1, 2, 4, 10). If a delimiter were encountered after the
“p,” the token would be recognized, the term frequency count for the word
“drop” would be incremented, and the state machine would return to state
1.

The state machine has a small probability of a false positive in the match-
ing of tokens. Since the number of matches is expected to be small, even a
small number of false positives could alter the detection probabilities. To
reduce the possibility of false positives, the length of each term is stored on
each tile, and a further check performed to make sure the length matches
when a matching token is encountered. With this further step the probabil-
ity of a false positive is greatly reduced. It is not eliminated entirely but no
examples of false positives have been observed in the data set.

In our experimental system, the Tilera card is installed in a quad socket,
dual core workstation, for a total of eight cores. The host processor and Tilera
communicate over a PCI Express bus. The multi-threaded host program send
data blocks to the six ingest tiles on the Tilera. The data is sent using the
optimized zero copy mechanism in the Tilera. The data ingest tiles then

12

broadcast the data stream to the processing tiles using the iLib messaging
interface in the Tilera. To maintain coherence between data packets sent to
the Tilera and the results returned, the messaging blocks are annotated with
id codes generated by the host, allowing the host CPU to match a document
with the resulting TFIDF similarity score. The host compares scores from
the eight classifiers in each processing unit, and uses threshold parameters
to determine the document’s final classification.
State machine representation The state machine is implemented as a 2D
array of 16 bit integers. The lower 8 bits are used as the next state transition
index. The upper 8 bits are used as the token id. The reserved token id of 0
is used as the “no match” token. Thus the 16 bit array allows 255 different
tokens to be matched.

Each input character in the data stream is truncated to 7 bits for ASCII
text packets (though the approach could be expanded to 8 bits if necessary).
There are 228 possible states with 128 potential different state transitions to
be stored on each tile. The state machine has 2 special states. State 0 is a
waiting state that the system enters when there is no possibility of a match
and the system is waiting for a new token to start. State 1 is the starting
state. Upon receipt of a delimiter token such as space or tab, the system
increments the term’s count if a term was matched, and then goes to the
starting state.
Generating the state machines The state machines are generated off-line,
using the top 255 TFIDF scores of each attack type. The algorithm indexes
into an array for each character in a term to detect whether a state transition
has been defined for the character. If existing paths are in place, the paths
are followed until the point at which the state transitions are unspecified.
The transitions for the term being encoded are then randomly assigned.
Additional checks are performed in the encoding to ensure the term’s state
transition sequence does not fold on itself or interfere with other terms. At
the end of the character sequence, a flag is set to trigger an output with the
appropriate term id if the following character is a delimiter (space, tab, . . .).
The state machine is set up to allow any number of different delimiters to
be used with no decrease in performance. With simple modifications to the
appropriate generator, the state machine could allow wildcard characters,
character classes (eg. numbers, lowercase letters only) and combinations of
these patterns.

Beyond the first two states, all states are randomly assigned during the
array creation process. For example, suppose the word “Select” must be

13

Table 1: Throughput results for 1 – 8 attack types with 1–25 processing units

Num. Attacks / 1 2 4 8
Num Units

1 6.42 6.42 6.42 6.42
2 12.79 12.79 12.77 12.70
3 19.09 19.09 19.09 18.99
4 25.34 25.34 25.34 25.22
5 31.58 31.58 31.58 31.39
6 37.70 37.70 37.58 37.4
8 49.84 49.84 49.84
10 61.87 61.87 61.87
12 73.55 73.55
15 90.67 90.67
20 118.17
25 136.57

placed in the array. Starting from state 1, we look up the location corre-
sponding to upper or lower case “s.” If it is occupied we follow it to the
next state already assigned from a previous word. If it is not occupied, we
randomly assign the next state to the “s” location and move to that state.
The same process is followed in the new state for the “e” and so on. The next
state assignment is placed in the lower byte of the array element, the upper
byte being used to flag token match with the appropriate term id (from 1 to
255). Once a term is completely assigned, the array is checked for conflicting
matches, or patterns that loop on themselves. If either of these conditions
occur, the process is re-started with new random state assignments. Finally
the entire set is checked for correctness and to ensure no match conflicts.
The random assignment ensures an even distribution of the patterns across
the entire array, and reduces the probability of false positives.

4.3. Tilera Results

The Tilera algorithm has been devised to allow maximum flexibility to
trade off between the number of attack types and throughput. Table 1 shows
throughput results for various numbers of attack types ranging from 1 to 8
(columns) versus the number of processing units (1 to 25). The maximum

14

throughput to detect one attack type using 25 tiles is 136.57MB/s. The
standard configuration of eight attack types using six processing units delivers
throughput of 37.4 MB/s. For dictionaries with more than eight attack types,
the size of each processing unit would increase, and the number of processing
units would commensurately decrease.

5. FPGA Hardware Algorithm

The hardware algorithm seeks to minimize the number of multiply and
divide operators and to minimize memory usage.
Minimize calculation In our application we generate the eight attack type
scores for an input document and label the document based on the largest
score. There is an opportunity to simplify Equation 6 and reduce the number
of arithmetic operations required to compute the similarity score. There are
two places where normalization is applied to allow the scores of one document
to be compared to another’s scores:

• the tf component of the numerator’s tfidf contains a normalization by
the number of terms in the input document (expressed as

∑
v∈d count(v, d)

in Equation 1).

• the denominator’s
√∑

t∈d tfidf(t, d)2 normalizes the tfidf score across
the document collection.

The normalization factors enable comparison between documents. Since
these factors are constant across all attack types for a single document, they
can be omitted without affecting the classification.

With these simplifications it is possible to translate Equation 6 into a
form that can be facilitated through table lookups.

sim(d, a) =

∑
t∈d∩a count(t, d) · C1 · C2

C3

(7)

where

C1 = idf(t)
C2 = tfidf(t, a)

C3 =
√∑

t∈a tfidf(t, a)2
(8)

Given that all three constants are relative to a particular attack type,
information can be combined to reduce table lookup size. In our approach

15

we combine C2 and C3 and refer to the value as a categoryWeight. Thus
the classifier model requires nine statistics for every term: a single C1 value
to indicate the term’s idf and eight categoryWeight values to indicate how
relevant the term is to a particular attack type.
Minimize memory As stated in Section 3 the full dictionary for the ECML
training data set uses 47MB. We seek to encode the dictionary in a combi-
nation of logic and memory of approximately 128KB, a compression factor
of more than 367. Three different optimizations are employed to help reduce
the dictionary memory footprint to 0.2% the size of the original. First, as
discussed above, we truncate the dictionary so that only the N most signif-
icant terms per attack type are utilized. N is a parameter to the hardware
algorithm, and in the experiments discussed in Section 5.5 is around 1900
terms. Adaptations to the hardware algorithm resulted in comparable accu-
racy to the sequential one. Differences between the original and streaming
runs can be partially attributed to the fine tuning of the threshold operation
(see Section 5.3 for a description of thresholding).

The second optimization is to quantize the categoryWeight and idf data
values in the dictionary in order to simplify the numerical diversity and allow
better information compression. Finally, we utilize a hashing technique that
employs an array of Bloom filters to represent the dictionary data. Each of
these two optimizations is discussed in detail.

5.1. Quantize Term Scores

TFIDF training generates a large amount of statistical data that is en-
coded in a dictionary and utilized at runtime to determine the relevance of
a document’s terms to particular attack. This training typically exposes a
small number of keywords that are assigned a high categoryWeight while
the majority of data values receive much lower values. The log histogram for
one attack document’s categoryWeights in the ECML data set is illustrated
in Figure 6 (upper). This histogram, representative of all the attack types,
shows a great deal of numerical diversity (e.g., a few thousand unique data
values for one vector in the dictionary). However, is this diversity truly nec-
essary for accurate classification? Our hypothesis is that it is not, given that
our application may only need a gross estimate of a term’s relevance (i.e.,
“high, medium, or low”).

Based on this hypothesis, we constructed a program that resamples or
quantizes a dictionary’s tfidf scores across all attack types to a smaller
number of unique data values. This approach employs a simple weighted

16

0.0 0.1 0.2 0.3 0.4 0.5 0.610-1

100

101

102

103

In
st

an
ce

s

Log-Histogram of Original Weights for an Attack

0.0 0.1 0.2 0.3 0.4 0.5 0.610-1

100

101

102

103

In
st

an
ce

s

Log-Histogram of Quantized Weights for an Attack

Figure 6: Log histogram of tfidf score values

clustering algorithm that is weighted towards preserving larger data values.
As illustrated in Figure 6 (lower), the number of unique data values is re-
duced to eight while maintaining a fair representation of the spectrum. Each
of the nine vectors (idf and eight categoryWeights) in the dictionary are
quantized individually. These data values are also transformed from a float-
ing point representation to fixed point in order to simplify the hardware
implementation.

101 102 103 104 105 106

Total Dictionary Terms

90

92

94

96

98

100

A
cc

ur
ac

y
(P

er
ce

nt
)

16 Quantization Levels
8 Quantization Levels
4 Quantization Levels

Figure 7: Impact of quantization vs. term size on accuracy

In order to test our hypothesis we generated a wide range of truncated,

17

quantized dictionaries from the training data set and evaluated accuracy
when the classifier was applied to the testing data set. As illustrated Figure
7, reasonable accuracy can be achieved even when the dictionary is heavily
quantized to contain just a few unique data values per vector. Over quantiz-
ing does result in instability and losses in accuracy.

5.2. Hash Methods

Terms in the original ECML training data set were on average 24 bytes
long and in total were 19MB. Even with a reduced dictionary with only a few
thousand terms, it is infeasible to store the original text in the dictionary.
In addition to capacity issues, it is challenging to look up an entry in the
dictionary of this size with minimal memory accesses, necessitating hashing.
A plain hash table for dictionaries of this size will still not likely fit entirely in
an FPGA’s internal Block RAM. It is necessary to consider more probabilistic
hash functions that estimate whether an input belongs to a set. Bloom filters
[17] are a common technique for compactly implementing a set membership
test. A Bloom filter consists of several hash functions and a bit vector. All
hash functions are applied to an input term and the resulting hash values
index into the bit vector at multiple locations. The term is considered a
member of the set if all selected bits are set. The Bloom filter is a probabilistic
technique as collisions may result in false positives, although there will be no
false negatives. The number of hash functions and size of the bit vector may
be configured to optimize between memory constraints and desired accuracy.
Reducing the false positive rate requires more memory for the filter.

Our approach to implementing a quantized dictionary is to employ a large
array of Bloom filters, with each filter representing a particular data value
in the dictionary. At runtime an incoming term is hashed according to the
needs of the Bloom filters. The hashes are dispatched globally and each
Bloom filter tests whether the input is a member of its set. If a Bloom filter
identifies a hit, the data value associated with the filter is presented to the
corresponding scoring unit. While this approach does not scale when there
are a large number of quantization levels or attack types, it does provide a
compact means of housing a dictionary with a large number of terms.

In our initial implementation, we focused on combining C1, C2, and C3 to
minimize the amount of data required by the dictionary. While this approach
worked, it suffered in accuracy because of both false positive rates and the
lack of numerical diversity. Instead, implementing two statistics, idf and
categoryWeight, in the dictionary provides a larger numerical range (i.e.,

18

multiply two 8-value numbers) and can cause better Bloom filter accuracy
(i.e., a false positive must occur in both the idf and categoryWeight lookup
to propagate).

5.3. Hardware Layout

The layout of the top-level hardware design is illustrated in Figure 8.
This architecture has five components.

Score

Bloom
Filter
For

Weight
N

Bloom
Filter
for

Weight
1

IDF Lookup

H Hash Generators

Input Stream Tokenizer

Bloom
Filter
For

Weight
N

Bloom
Filter
for

Weight
1

Category 1
Valid

Clip

Score

Bloom
Filter
For

Weight
N

Bloom
Filter
for

Weight
1

Category C
Attack

Clip

OK
Not
OK

Select Largest Score at End of Input

Figure 8: Top level hardware design

Input Stream Tokenizer The first unit in the data flow parses an input
message from a queue and extracts a byte stream of lowercase tokens. This
unit is the most complicated part of the design as tokens vary in length and
are delimited by several character sequences. Tokenization is a serial opera-
tion that operates on byte-sized data values and is therefore the bottleneck
in the design.
Hash Generators The second unit examines the incoming token byte stream
and generates H different hashes for each token. A variety of hash functions
were considered for this work. We ultimately selected a Pearson [18] hashing
approach that employs 4×H randomly-generated 256-entry lookup tables to
hash each token. To avoid hash collisions between small tokens, we inserted

19

a unit to append a token’s bytestream with a 2-byte length. This unit adds
two stall cycles per token to the byte stream, but greatly improves the quality
of the hash functions.
IDF Lookup A single set of Bloom filters is used to perform a dictionary
lookup of the input term’s idf value. If the term is not found in any of the
Bloom filters, an output of zero is produced. The design only requires a
single IDF Lookup Unit, as the idf value for an input token is the same for
all categories.
Category Analysis Units The bulk of the work in the design is performed
by an array of category analysis units. Similarly to the IDF Lookup unit,
a category analysis unit employs an array of Bloom filters to look up an
input token’s categoryWeight for a particular attack type. This value is
then multiplied by the idf value to compute the term’s relevance, which
is added to a cumulative score for the input message. When all tokens are
processed, a threshold operation is applied to remove scores that do not meet
a specified value. This threshold operation allows users to tune how sensitive
the classifier is to malicious behavior.
Majority Vote The last unit in the dataflow examines the final scores of
the different categories when all tokens are processed and selects the category
with the largest value as the winner. The message is labeled as “ok” or “not
ok” based on whether the winning classifier is the “valid” category or an
attack category.

5.4. Generating the Hardware Classifier

An important aspect of this work is being able to rapidly generate custom
hardware designs based on different input training data sets and user-selected
parameters. This feature is essential in network security applications where
new attack vectors and categories are added on a regular basis. Our ap-
proach to making a customizable hardware implementation is based on two
components. First, a general-purpose hardware design was developed that
is parameterized and can be adapted to different classification work based
on updates to the Bloom filter data. Second, we developed a tool chain for
automatically building hardware. As illustrated in Figure 9, the tool flow is
based on several components.

• Training: A user can supply labeled training data to a TFIDF program
to generate the full dictionary of TFIDF weights for the classifier. This
data is exported to a SQLite database for data queries.

20

data.h

Software
Classifier

(C)

pkg.vhdl

Hardware
Classifier
(VHDL)

Modified
Dictionary

Full Dictionary

TF-IDF
Training

Training
Data

Truncate

Quantize

Build Hashes

Build Headers

Figure 9: Tool Flow for Building Hardware

• Truncate: For each attack category, the top T terms and their statistics
are extracted. The user selects the parameter T .

• Quantize: Each vector in the dictionary is run through a quantizer
to reduce the number of unique data values in the dictionary. The
number of quantization levels is a user-selected parameter chosen to
trade between accuracy and memory footprint.

• Build Hashes: Data from the modified dictionary is then converted into
a series of Bloom filters. The user may tune a Bloom filter error rate
parameter to scale the memory footprint of the filters and the number
of hash functions that are utilized.

• Build software: The tool chain can export hash data to a C header file.
This file is utilized by validation tools (e.g., verify all dictionary tokens
hash properly) and a stand-alone evaluation program (e.g., classify all
inputs in a file).

• Build hardware: Finally, the tool chain constructs a VHDL package file
that includes all the data necessary to instantiate the Bloom filters.

21

While the current approach requires the hardware design be recompiled
when a new model is applied, it would be straightforward to allow updates
to be completed through writes to the Bloom Filter Block RAMs.

5.5. Implementation Experiments

A number of experiments were conducted to validate both the hardware
design and the tool chain. In all of the experiments we targeted a Xilinx Vir-
tex 5-LX 50 part (XS5VLX50T-FG1136C-1) found on the Xilinx ML555 ref-
erence board. This part features sixty 36Kbit Block RAMs, allowing 240KB
of 32b data values to be stored internally. We employed the ISE 11.1 tools
and the built-in synthesis tool XST. For verification, a special design was
constructed that supplied a number of input documents to the classifier.
ChipScope was utilized to verify the output results were correct.

5.5.1. Utilization Characteristics

In order to observe how different parameters affect the hardware imple-
mentation, we constructed a reference design that simply instantiates an
input FIFO, the classification core, and routes all of the I/Os to the FPGA’s
pins. This design does not serve as a functional system, but provides a means
by which realistic implementations can be observed. We supplied a large
number of configurations and measured the amount of resources required by
each implementation.

103 104 105

Total Dictionary Terms

0

20

40

60

80

100

B
R

A
M

U
til

iz
at

io
n

(P
er

ce
nt

)

8 Quantization Levels
4 Quantization Levels
2 Quantization Levels

Figure 10: Memory footprint for different build parameters

22

103 104 105

Total Dictionary Terms

0

20

40

60

80

100

S
lic

e
LU

T
U

til
iz

at
io

n
(P

er
ce

nt
)

8 Quantization Levels
4 Quantization Levels
2 Quantization Levels

Figure 11: Slice utilization for different build parameters

Resource utilization numbers are presented in Figures 10 and 11. As ex-
pected, more quantization levels translates to more Block RAM utilization
in the smaller designs. However, these memory requirements become less
distinct as more terms are included in the dictionary. This trait can be at-
tributed to the fact that Block RAMs are allocated in large capacities (2KB),
and that the lower-term dictionaries do not fully utilize their Block RAM al-
locations (e.g., a 128B Bloom filter is implemented with a 2KB BRAM).
In terms of slice utilization, the different designs remain relatively constant
until Block RAM resources are fully consumed. While the ISE tools are so-
phisticated enough to switch to using slices as memory when Block RAM is
exhausted, doing so rapidly fills the FPGA.

5.5.2. Performance Measurements

Performance of the hardware implementation depends on two factors: the
average length of tokens in the input stream and the maximum rate at which
the hardware can be clocked. For the former, each input contains a variable
number of variable-length tokens. Our design processes data in a byte-stream
manner and incurs two pipeline stalls at the end of each token encountered.
For an input with C characters and T tokens, this delay results in a streaming
efficiency of C

C+2·T . The design therefore has streaming efficiencies ranging
from 0.5 in the worst case (when the input is a series of one character tokens)
to nearly one in the best case (when the input is a single token). Inputs in
both the ECML testing data set and the West Point data set were found to

23

provide an average streaming efficiency of 0.85.
For clocking measurements, we generated a design that employed eight

quantization levels and a dictionary with 3,919 terms of statistics. We found
that the maximum clock rate for this design was 196MHz. Multiplying the
streaming efficiency of the ECML testing data set by this clock rate results in
a streaming rate of 166MB/s. This data rate is sufficient for Gigabit network
speeds and greatly outpaces software implementations without impacting
accuracy.

6. Discussion

We have developed two very different streaming, parallel implementations
of the HTTP attack classification algorithm on massively multi-core and
FPGA processors. Our experienceis discussed along several dimensions.

Algorithm Development In terms of development effort, the Tilera al-
gorithm took approximately three months for an engineer experienced in al-
gorithm development for massively multi-core processors, but not with Tilera.
The Linux/C programming environment made it possible to start with the
base sequential program and gradually improve parallelism and performance.
We found that the proprietary intrinsics for concurrency and communication
were necessary to obtain high performance, but did not have to write assem-
bly code. The relatively mature development tools and fast compile/debug
process made it possible to code, test and analyze many different mapping
and communications strategies.

The FPGA effort took six months, of which less than a month was spent
in writing hardware description language code. The FPGA implementation
was also undertaken by an experienced engineer with extensive hardware,
software, and algorithm design and implementation experience. The most
time consuming part of the FPGA version was in devising methods to reduce
the model size without compromising accuracy, and in writing tools to help
automate data analysis to arrive at appropriate quantization levels to encode
the CategoryWeights. Standard, mature FPGA development tools from
Xilinx were used to compile, simulate, and test the design.

Platform characteristics In addition to development time, the Tilera
and FPGA co-processors can be compared according to cost and energy
efficiency. In the form of PCIe co-processor boards, the two systems are
roughly comparable in cost at roughly 2× the cost of a standard workstation.
They would be significantly less expensive than a workstation in quantity and

24

in embedded form factor. In terms of power, both platforms are low power
compared to a workstation. The Tilera draws around 20W. The FPGA power
draw depends on the design. Our design on the Virtex 5-LX uses about 1W.

Data set The characteristics of the dictionary and the streaming algo-
rithms’ throughput depend on the data set. Most of the analysis and ex-
perimental verification used the fully labeled ECML/PKDD data set, from
which we analytically derived quantitative accuracy metrics. While we were
not able to find another labeled data set, we also worked with data from
the 2009 Inter-Service Academy Cyber Defense Exercise [6], also called the
West Point data set. This data set consists of packet traces from network
attack exercises by the National Security Agency on a network hosted by
West Point Academy. Our algorithms detected HTTP attacks in this data
set2. We ran a security module from the open source Apache web server over
the West Point data set, and verified that this tool also flagged as attack the
request packets flagged by our algorithm. Since the data set is not labeled,
we could not generate a dictionary from the West Point data set, nor could
we compute accuracy. As discussed in 5.5.2, the input term size can affect
FPGA throughput. The input terms of the West Point data set had the same
streaming efficiency as the ECML/PKDD, and therefore throughput was the
same for both data sets.

Performance The streaming implementations were designed to optimize
throughput with as little impact as possible on accuracy. Speed and accuracy
for various implementations are summarized in Table 2.

The Java implementation of [2] focused on accuracy with a complete
TFIDF dictionary and did not consider performance. On the Tilera, we re-
duced the size of the dictionary by retaining the top 255 high value terms
so that an attack dictionary could fit completely in the L2 cache of each
Tile64 core., which reduced accuracy by 2%. The combination of approxi-
mate state machine and reduced dictionary gave a throughput of 37MB/s.
On the FPGA, we transformed the representation of scores in the dictionary
from floating point to small fixed point values and used Bloom Filters to store
those values, reducing the dictionary size to .2% of the original. Throughput
on the ECML/PKDD and West Point data sets was 166 times the original.

To consider the effects of the Tilera and FPGA optimizations on con-

2We tried several other data sets, but they did not contain HTTP request attacks of
this form.

25

Table 2: Throughput Comparison

Classifier Throughput Accuracy
Original Java 2MB/s 94%

Streaming Tilera (ST) 37MB/s 92%
Streaming HW (SHW) 166MB/s 94%

ST – workstation 10.2MB/s 92%
SHW – workstation .901MB/s 94%

ventional CPUs, we also developed sequential C language implementations
of the Tilera and FPGA algorithms. These versions were run on the Tilera
host, a 2.2GHz x86 processor with 4GB memory. The results show that the
Tilera optimizations also benefit standard workstation platforms. Although
our workstation implementation is single threaded, we expect the algorithm
to scale nearly linearly with additional cores. In contrast, the sequential
performance of the FPGA algorithm is very poor. In this algorithm, each
token is run through 32 byte-oriented hash functions. Each token requires 4
lookups into about 9×8 Bloom filters. These operations are friendly to logic
gates, but inefficient for a 64-bit CPU.

7. Conclusions

In this work, we have described a novel algorithm to detect malicious
web HTTP requests. We have shown two implementations of streaming
classifiers capable of processing a text stream at 37MB/s and 166MB/s re-
spectively. The classifiers detect seven different attack types and differentiate
between attack and normal HTTP web page requests with an accuracy of
92% (Tilera) and 94% ((FPGA). Optimizations were employed to enable
streaming, reduce computation, and minimize memory usage. The Tilera al-
gorithm, implemented entirely in C and utilizing 55 processing cores, demon-
strated throughput of 18.5X sequential software on a workstation. Even with
a dictionary compressed to 0.2% the original, the FPGA hardware algorithm
shows the same accuracy as the original software implementation, with 80X
the throughput of the sequential algorithm. The performance and accuracy
of our streaming classifiers allows them to be used as real time analysis com-
ponents of an advanced intrusion prevention pipeline in network security

26

applications.
Acknowledgments The ECML/PKDD data set was obtained from the
ECML/PKDD 2007 Workshop and is administered by Dr. Mathieu Roche.
John May of LLNL designed and implemented an initial software stream-
ing architecture and studied the impact of term frequency vector length on
classification accuracy.

[1] G. Salton, A. Wong, C. S. Yang, A vector space model for automatic
indexing, Communications of the ACM (11) (1975) 613–620.

[2] B. Gallagher, T. Eliassi-Rad, Classification of http attacks: A study on
the ecml/pkdd 2007 discovery challenge (TR-414570).

[3] G. Salton, C. Buckley, Term-weighting approaches in automatic text
retrieval, Information Processing and Management (1988) 513–523.

[4] C. Manning, P. Raghavan, H. Schutze, Introduction to Information Re-
trieval, Cambridge University Press, 2008.

[5] Ludovic Denoyer and Hung Son Nguyen, ECML/PKDD 2007 Discovery
Challenge, Available http://www.ecmlpkdd.org/, 2007.

[6] ITOC, West point data set, http://www.itoc.usma.edu/research/dataset
(2009).

[7] C. Rassi, J. Brissaud, G. Dray, P. Poncelet, M. Roche, M. Teisseire, Web
analyzing traffic challenge: Description and results, in: Proceedings of
the ECML/PKDD 2007 Discovery Challenge, 2007, pp. 47–52.

[8] K. Pachopoulos, D. Valsamou, D. Mavroeidis, M. Vazirgiannis, Feature
extraction from web traffic data for the application of data mining al-
gorithms in attack identification, in: Proceedings of the ECML/PKDD
2007 Discovery Challenge, 2007, pp. 65–70.

[9] I. Witten, E. Frank, Data Mining: Practical machine learning tools and
techniques, Morgan Kaufmann, 2005.

[10] M. Exbrayat, Analyzing web traffic: A boundaries signature approach,
in: Proceedings of the ECML/PKDD 2007 Discovery Challenge, 2007,
pp. 53–64.

27

[11] T. Chen, Z. Zheng, N. Zhang, J. Chen, Heterogeneous multi-
core design for information retrieval efficiency on the vec-
tor space model, Fuzzy Systems and Knowledge Discov-
ery, Fourth International Conference on 5 (2008) 353–357.
doi:http://doi.ieeecomputersociety.org/10.1109/FSKD.2008.229.

[12] H. Song, J. W. Lockwood, Efficient packet classification for net-
work intrusion detection using fpga, in: FPGA ’05: Proceedings
of the 2005 ACM/SIGDA 13th international symposium on Field-
programmable gate arrays, ACM, New York, NY, USA, 2005, pp. 238–
245. doi:http://doi.acm.org/10.1145/1046192.1046223.

[13] Z. K. Baker, V. K. Prasanna, Time and area efficient pattern
matching on fpgas, in: FPGA ’04: Proceedings of the 2004
ACM/SIGDA 12th international symposium on Field programmable
gate arrays, ACM, New York, NY, USA, 2004, pp. 223–232.
doi:http://doi.acm.org/10.1145/968280.968312.

[14] A. Das, S. Misra, S. Joshi, J. Zambreno, G. Memik, A. Choud-
hary, An efficient fpga implementation of principle component anal-
ysis based network intrusion detection system, Design, Automation
and Test in Europe Conference and Exhibition 0 (2008) 1160–1165.
doi:http://doi.ieeecomputersociety.org/10.1109/DATE.2008.4484835.

[15] D. L. Olson, D. Delen, Advanced Data Mining Techniques, Springer,
2008.

[16] LLNL, Data-centric computing architectures,
https://computation.llnl.gov/casc/dcca-pub/dcca/Downloads.html
(2009).

[17] B. H. Bloom, Space/time trade-offs in hash coding with allowable errors,
Commun. ACM 13 (7) (1970) 422–426.

[18] P. K. Pearson, Fast hashing of variable-length text
strings, Commun. ACM 33 (6) (1990) 677–680.
doi:http://doi.acm.org/10.1145/78973.78978.

28

